# Short-term reliability: System Stability Part 2

Debbie Lew and Nick Miller WIEB/WIRAB Tutorial May 6, 2020





## Webinar Outline

- April 15 Resource Adequacy long-term reliability
- April 22 System Balancing medium-term reliability
- April 29 System Stability part 1 short-term reliability
- May 6 System Stability part 2 short-term reliability
- May 20 100% Clean Energy and Distributed Energy Resources

Last week: Frequency Control Voltage/Reactive Power Transient Stability

> This week: Fault ride-thru Grid strength/Weak grid Small signal stability



# Acronyms/definitions

- FACTS Flexible AC transmission systems are equipment to support power transmission and control
- FRT frequency ride through is the ability of a generator to ride through frequency deviations
- IBR inverter-based resources
- Momentary cessation (aka blocking, sleep mode) is an action of an inverter to momentarily stop injecting current into the grid because grid conditions are abnormal
- Phase jump occurs when an inverter comes back online and is injects current into the grid but the waveform is offset from the previous waveform.
- **POD** power oscillation damping
- Protection describes a wide range of devices and schemes to protect equipment and people from damage due to abnormal conditions
- **PSS** power system stabilizer
- SCR short circuit ratio is a metric we use to assess grid strength
- **SSCI** subsynchronous control interaction
- **SSR** subsynchronous resonance
- Trip is an action of a power plant to go offline and not immediately return to service.
- VRT voltage ride through is the ability of a generator to ride through voltage deviations (ZVRT is zero voltage ride-through and LVRT is low voltage ride-through)







# Fault ride-through

## Synchronous generators Fault ride-through basics

- Synchronous generators have two modes: continuous operation (on) and tripped (off)
- Fault ride-through behavior is driven by physics of synchronous generators
- Synchronous generators are electromechanically coupled to grid frequency
- Synchronous generators have various protective relays to protect them against equipment damage
- NERC PRC-024-2 Generator Frequency and Voltage Protective Relay Settings indicates at what voltage and frequency, generators must not trip



Voltage Ride-Through





Top: GE; bottom: NERC PRC-024-2 standard

## Inverter-based resources Fault ride-through basics

- IBRs have three modes:
  - Continuous operation (injecting current)
  - Momentary cessation (MC stops injecting current momentarily): IBRs go into MC for abnormal voltages.
  - Tripped (stops injecting current with delay before returning to service, not energized).
- Fault ride-through behavior is driven by software programming
- IBRs measure frequency and voltage quickly but if this is done too fast, they may measure transients (transient overvoltage, phase jump)





Graphic: IEEE 1547-2018 standard

## IEEE 1547 – interconnection standard for DER

#### The old IEEE 1547-2003

- Twenty years ago
  - We did not expect high penetrations of DER
  - Safety was primary concern

HickoryLedge

- DERs were mostly rotating machines
- We wanted DERs to trip during abnormal conditions
- IEEE 1547-2003 was not designed for high penetrations of DERs or for DERs to support the bulk power system.
- Planners need to manage legacy equipment connected at the old standard.
- Some of the philosophy and settings on distributed PV inverters inadvertently made its way into utility-scale PV inverters

The new IEEE 1547-2018

- Supports high penetrations of DERs
- DERs support the bulk power system by riding through voltage and frequency events
- DERs can provide a significant amount of functionality
  - Voltage regulation
  - Communications
  - Control
  - Ancillary services



IEEE 1547-2018 helps your region accommodate more DER and helps WECC maintain reliability during events

## 1200 MW PV did not ride through Blue Cut Fire Event



Batteries, other IBRs beyond wind and PV



- 700 MW PV incorrectly measured frequency and tripped in 10 ms
- 450 MW PV momentarily ceased during abnormal voltage. After 50-1000 ms delay, ramped up to full output. Took 2 minutes.
- 100 MW PV tripped by overcurrent protection.
- If you are installing wind/PV capacity quickly, grid codes that require advanced ride-through capabilities are critical! Legacy (old) systems may have long lifetimes.

At the time, calculations suggested up to 7000 MW was at risk for other credible fault events !!!

Misunderstandings of inverter operation, conflicting requirements, and instantaneous measurements led to Blue Cut Event with loss of 1200 MW PV



GE Energy Consulting, 2018; Graphics: NERC, 1200 MW Fault Induced Solar PV Resource Interruption Disturbance Report, June 2017

## 1200 MW PV did not ride through Blue Cut Fire Event

Misunderstandings of inverter operation, conflicting requirements, and instantaneous measurements led to Blue Cut Event with loss of 1200 MW PV





**HickoryLedge** 

C

DEBRA LEW LLC

GE Energy Consulting, 2018; Graphics: NERC, 1200 MW Fault Induced Solar PV Resource Interruption Disturbance Report, June 2017

### DERs did not ride through 2018 Southern California events

#### Angeles Forest and Palmdale Roost faults

- DERs in SCE tripped or momentarily ceased output. PG&E DERs were not affected.
- Net load increase lasted 5-7 minutes, correlating with reset times in IEEE 1547-2003.
- Increases in net load of approximately 130 MW for Angeles Forest and 100 MW for Palmdale. Difficult to accurately assess DER impact due to lack of measurements of DERs.





Graphics from NERC, April/May 2018 Solar PV Disturbance Report, 2018

# Key points – Fault ride-through

- We want all generators, even IBRs and DERs, to ride-through minor voltage and frequency events and continue to support the grid.
- IBRs can be designed to provide better ride-through performance than synchronous generators. Superior performance can be valuable.
- Momentary cessation should be eliminated if possible. For IBRs that must go into momentary cessation, the IBR should return to service when possible with the least amount of delay and with a fast ramp rate, unless otherwise directed.







# Quick tutorial on grid strength

#### Transient Stability Small Signal stability

## What is Grid Strength?









"Strong Grid"

"Impending Fault"

- Grid strength is like a "stiffness" of a power system
- It is specifically for voltage (not frequency)
- Unlike frequency stability, location matters
- In a strong grid, bus voltages do not change much when the system is 'whacked' by a disturbance like a fault
- In a weak grid, bus voltages change a lot during disturbances like faults



Source: M. Richwine, GE Energy Consulting 2017

### What contributes to grid strength besides transmission?

Yes

No

- Synchronous generators
  - Coal
  - Gas
  - Hydro
  - Nuclear
- Synchronous condensers
- Potentially future inverter-based resources

- Today's Inverter-based resources
  - PV
  - Wind
  - Batteries



#### How do you know when you're at risk?

- Short-circuit ratio (SCR): Short-circuit strength at the generator compared to the MW rating of the inverter/generator.
- This metric, and similar metrics, can be used to flag risky areas or operating conditions
- ERCOT, HECO, and EIRGRID have developed metrics to know when they are at risk



#### How do you know when you're at risk?

- Short-circuit ratio (SCR): Short-circuit strength at the generator compared to the MW rating of the inverter/generator.
- This metric, and similar metrics, can be used to flag risky areas or operating conditions
- ERCOT, HECO, and EIRGRID have developed metrics to know when they are at risk



#### Grid strength is not a market product anywhere

- ERCOT, South Australia and EirGrid are having issues with system strength due to high IBR penetration, but it's not a market product, so how do they manage?
- Operationally
  - Run synchronous generator as reliability-must-run and dispatch it out-of-merit wind/solar curtailment and economic consequences
- System:
  - Build more transmission to alleviate weak grid issues
  - Fine-tune and coordination of controls of IBRs
  - Install synchronous condensers/convert retiring fossil plants to synchronous condensers who installs; who pays; potential interactions with rest of system
  - Grid-forming inverters are a potential future solution







### Small signal stability in everyday life Tacoma Narrow Bridge Collapse Nov 7, 1940





Slide from WIEB/CREPC Oct 2019

Parts of Tony C YouTube video Dec 9, 2006: <u>https://youtu.be/j-</u> <u>zczJXSxnw</u> 19

DEBRA LEW LLC

# There are different types of small signal stability issues

#### "Traditional" issues

- Inter-area and Inter-machine synchronous machine interaction
  - Power System Stabilizer (PSS) tuning
  - HVDC Power Oscillations (POD)
  - Interregional Swings
- Subsynchronous resonance
  'New' issues
- IBR control stability with low levels of synchronous generators
- Subsynchronous control interaction
- Market induced oscillations

**HickoryLedge** 



Source: Adam Sparacino, MEPPI, IEEE PES GM 2019

## We have always managed and mitigated small signal stability

- Old subject with some new twists
- High gain exciters (1960s) that improved transient stability, aggravated small-signal damping
- Power system stabilizer (PSS) invented: mandatory on WECC synchronous generators



Prasenjit Dey 🖾 , Aniruddha Bhattacharya 🕺 🖾 , Priyanath Das 🖾 

https://doi.org/10.1016/i.aci.2017.12.004 Under a Creative Commons license

These are about 1Hz – i.e. 1 swing per second



## Eigenvalues and other mythical creatures

The math behind oscillatory behavior



Real Axis ( $\sigma$ )



### Eigenvalues and other mythical creatures

The math behind oscillatory behavior



DEBRA LEW LLC

## Eigenvalues and other mythical creatures

#### The math behind oscillatory behavior

HickoryLedge



Why am I giving you this detail?

- Some of the tools and expertise for small signal analysis is different
- This "frequency domain" analysis, not time simulations
- Models (and available skills) may be inadequate for emerging needs



# IBRs can help mitigate some small signal stability issues





#### IBRs tend to stabilize traditional interarea swing modes



- Historic export induced inter-area damping *may* be **improved** with IBR exports
- PSS not normally required on IBRs
- Damping *could* be further improved by adding POD (power oscillation damping) controls









# Torsional concerns

### Turbine-Generator Torsional Modes of Vibration

Х

Steam, gas, hydro and wind turbines are all big torsional mass-spring systems!





Source: GE Energy Consulting

DEBRA LEW LLC HickoryLedge

Boardman Machine Portland General Electric



#### Feedback

The ugly side of high gains and fast response







Moving to the "righthand plane" (  $\delta > 0.0$ ) is BAD!

> <sup>29</sup> Image source: Rentics

## Mechanism of Torsional Interaction with HVDC Converter Controls



Feedback Loop:





#### Source: GE Energy Consulting

Similar to microphone

1. connection to rest

of grid is weak

converter is big

compared to the

2. Size (rating) of

generator

feedback problem.

More challenging

when:

## Damping is poorer when AC System Strength is Reduced – i.e. weak grid

Torsional Instability Observed at Intermountain Plant

- Instability occurred during commissioning tests
- Torsional damping control in HVDC converter malfunctioned
- Torsional stress relay detected the problem



#### Source: GE Energy Consulting

## Series Capacitors and Torsional Stress



# Managing Torsional Risk from Subsynchronous resonance & Subsynchronous control interaction

- Mitigate the risk of occurrence
  - Passively damp resonances and limit energy
  - Manage topology and configuration
  - Limit maximum series compensation
  - Control design for IBR (and HVDC) avoid interactions
  - Actively damp calm unavoidable interactions (e.g. supplemental excitation damping controllers; weak grid controls for wind, PV and batteries)
- Protect the turbine-generators

HickoryLedge

- Eliminates risk of generator damage
- Prudent insurance against unlikely, but possible, conditions





# IBRs can result in some small signal stability issues Weak grids and low levels of synchronous generation

## UK Blackout August 9, 2019

- Huge offshore, AC connected wind plant
- Small event: Shouldn't have tripped
- Other fossil plants tripped
- UFLS activated; ~1M customers affected
- Additional loads, esp. commuter rail tripped unexpectedly (their protection, not utility's)
- Power grid 100% restored within 45 minutes
- Some rail customers stranded for 6+ hours

**HickoryLedge** 

C

DEBRA LEW LLC



Source: National Grid ESO LFDD 09/08/2019 Incident Report 35 https://www.ofgem.gov.uk/system/files/docs/2019/09/eso\_technical\_report\_-\_appendices\_-\_final.pdf

# Small-signal instability: root cause



- 10-minutes before big event, this was observed
- V/Q regulator not tuned for weak grid
- <sup>1</sup>/<sub>2</sub> built plant still had "off-the-shelf" controls
- OEM quickly retrofit with more appropriate weak grid controls

DEBRA LEW LLC

HickorvLedge



Figure 5 - Showing the reactive power output from Hornsea 10 minutes prior to the event in response to a 2% voltage step change

## Wind plant: small signal instability in ERCOT



- Pockets of the system with high IBR penetrations and little synchronous generation can suffer small signal instabilities
- IBR controllers require sufficient grid strength to operate reliably and stably
- Even small perturbations like capacitor switching can cause instabilities in IBR controllers



ERCOT, Dynamic Stability Assessment of High Penetration of Renewable Generation in the ERCOT Grid Version 1.0, ERCOT, 2018 Transient Stability Small Signal stability

# Unintended consequences of synchronous condensers in ERCOT





Graphics: ERCOT, Dynamic Stability Assessment of High Penetration of Renewable Generation in the ERCOT Grid Version 1.0, ERCOT, 2018 Transient Stability Small Signal stability

## How can we mitigate these issues?

- Fine-tuning & coordinating controllers.
- IBRs OEMs continually improve for weaker grids.
  - But they can't get to 100% IBR penetration using current, grid-following technology
- Reliability-must-run synchronous generators (out-of-merit dispatch) for grid strength, but may have economic impact
  - Hydro, geothermal, nuclear and biomass/biogas are all synchronous generation
- Build more transmission to alleviate weak grid issues
- Damping from IBRs and FACTS devices



# Summary of Small Signal Issues

|                           | Primary Cause                     | Frequency/Period        | Primary Mitigation                     |
|---------------------------|-----------------------------------|-------------------------|----------------------------------------|
| Local Machine Swings      | High speed exciters               | 0.5-2.0 Hz / ~ 1 second | PSS                                    |
| Interarea/region Swings   | Fast exciters & governor response | 0.1-0.5 Hz/ ~10 seconds | Tuning; POD                            |
| SSR                       | Series Capacitors                 | 10-50 Hz / ~0.1 second  | Filters, dampers, topology             |
| SSTI                      | HVDC, IBR controls                | 10-50 Hz / ~0.1 second  | Controls, grid strength                |
| IBR weak grid instability | IBR controls,                     | 0.5-20 Hz               | Controls, GFM Inverters, grid strength |
| Price-induced Swings      | Market interaction                | 0.001 / 15-30 minutes   | Market redesign                        |



# Key points – Small signal stability

- Small-signal stability has always been challenging but the nature of the problem changes with IBRs:
  - Weak grid instabilities are different from inter-area oscillations. They're faster and more physically centered on voltage.
  - Interaction between inverters with high bandwidth controllers adds complexity.
  - Grid topologies/configurations are more complex and varied
  - More coordination is needed between more parties
  - Some detailed (EMT) and frequency domain (eigenanalysis) modeling included in planning
- Study needed on how synchronous condensers and gridforming inverters can help



 Frequency
 Transient Stability
 Small Signal stability

 Control
 Conclusion

- System is not viable unless it's stable. There a multiple facets to stability that ALL must be met simultaneously.
- IBRs create different challenges and opportunities.
- There are mitigation options for these challenges but we have not yet done the studies to be able to create a roadmap going forward, to quantify the costs and benefits of different approaches, or to deeply understand the implications of each approach.





## Congratulations! What's next?



DEBRA LEW LLC

HickorvLedae

• We learned about:

- How wind, solar, transmission, storage and demand response contribute to resource adequacy
- How wind and solar can provide essential reliability services
- How electrification and flexibility in demand will be important for balancing the system
- How inverter-based resources change stability limits on the system: there are both benefits and challenges
- What happens when we push the system even harder?
  - How might we manage 100% instantaneous penetration of inverter-based resources? Are grid-forming inverters a silver bullet?
  - How can we ensure resource adequacy with 100% renewables? Is long-duration storage our only hope?
  - What does this look like with high penetrations of DERs?











Debbie Lew debbie@debbielew.com (303) 819-3470 Nick Miller nicholas@hickoryledge.com (518) 951-8016

## References

- Impacts of inverters on fault-ride through NERC reference: <u>https://www.nerc.com/comm/OC Reliability Guidelines DL/Inverter-Based Resource Performance Guideline.pdf</u>
- NERC reports on three loss-of-solar events: <u>https://www.nerc.com/pa/rrm/ea/October%209%202017%20Canyon%202%20Fire%20Disturbance%20</u> <u>Report/900%20MW%20Solar%20Photovoltaic%20Resource%20Interruption%20Disturbance%20Report.p</u> <u>df</u>;

https://www.nerc.com/pa/rrm/ea/1200 MW Fault Induced Solar Photovoltaic Resource /1200 MW Fault Induced Solar Photovoltaic Resource Interruption Final.pdf; https://www.nerc.com/pa/rrm/ea/April May 2018 Fault Induced Solar PV Resource Int/April May 2 018 Solar PV Disturbance Report.pdf

• ERCOT's Dynamic Stability Assessment: <u>http://www.ercot.com/content/wcm/lists/144927/Dynamic Stability Assessment of High Penetration</u> <u>of Renewable Generation in the ERCOT Grid.pdf</u>

